Acta Cryst. (1968). B24, 1563

The crystal structure of WCl₆* BY DEANE K. SMITH,[†] RICHARD L. LANDINGHAM, GORDON S. SMITH and QUINTIN JOHNSON, Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 31 May 1968)

A WCl₆ compound, isostructural with UCl₆, has been identified by comparing calculated intensities with Debye-Scherrer patterns.

During the examination of a commercial‡ preparation of supposed WCl₅, the material was submitted for X-ray analysis to verify the compound designation. Chemical analyses were inconclusive in determining the W:Cl ratio because of difficulties with the reactivity of the compound. With the Debye-Scherrer techniques used, the pattern proved unidentifiable with any other tungsten-chlorine compound previously described (Reick, 1967). Other physical property measurements such as color and boiling point implied that the compound should be WCl₆. The Debye-Scherrer pattern, however, did not conform to that of WCl₆ described by Ketelaar & Oosterhout (1943).

Needle-shaped single crystals of the unknown were examined on a Buerger precession camera. The diffraction symbol proved to be $3m P_{---}$ with cell constants $a_0 = 10.511 \pm 0.003$, $c_0 = 5.757 \pm 0.001$ Å (refined values from Debye-Scherrer pattern). The only systematic reflection condition was hk.0 present only with h-k = 3n. This condition must be structural because it does not conform to any conditions established by any of the allowable space groups.

Structures of similar 1:6 compounds were examined with the aid of Donnay, Donnay, Cox, Kennard & King (1963) and Wyckoff (1967). The similarity of the unit cell to that of UCl₆ reported by Zachariasen (1948) suggested a similar structure type. To test this hypothesis, powder pattern intensities were calculated using the POWD2 program of Smith (1967), with Zachariasen's UCl₆ atomic position coordinates. This calculated pattern agrees very well with the measured pattern as shown in Table 1. This agreement suggests that the unknown is isostructural with UCl₆ (space group $P^{3}m1$) and is thus a new polymorph of WCl₆. It can be noted that the calculated intensities also satisfy the *hk*.0 condition described.

References

- DONNAY, J. D. H., DONNAY, G., COX, E. G., KENNARD, O. & KING, M. V. (1963). Crystal Data, Determinative Tables, 2nd edition, Monograph 5, American Crystallographic Association.
- KETELAAR, J. A. A. & OOSTERHOUT, G. W. (1963). Rec. Trav. chim. Pays-Bas, 62, 197.
- REICK, G. D. (1967). *Tungsten and its Compounds*. New York: Pergamon Press.
- SMITH, D. K. (1967). A Revised Program for Calculated Xray Powder Diffraction Patterns, UCRL-50264, Lawrence Radiation Laboratory, Livermore, California.
- * Work performed under the auspices of the U. S. Atomic Energy Commission.

WYCKOFF, R. W. G. (1967). *Crystal Structures*, Vol. 2, New York: Interscience Publishers.

ZACHARIASEN, W. H. (1948). Acta Cryst. 1, 285.

Table 1. Measured and calculated d-spacings and intensities for WCl₆.

Observed intensities are estimated visually from the Debye-Scherrer pattern. The calculated intensities include an absorption correction for $\mu = 498$ cm⁻¹ and a 0.3-mm-dia. spindle. In space group $P\overline{3}m1$, hk.l and kh.l are nonequivalent; however, no distinction between these reflections has been made in the assignment of indices.

d(calc)	d(obs)	hkf	l(obs)	l(calc)	d(cale)	d(obs)	hk/	l(obs)	i(calc)
5.757	5.635	00.1	< 1	0	1.142	1 140	54.1	<< 1	1
5.255	5.166	11.0	10	10	1.142	1.140	10.5		
4.865	4.818	10.1	7	6	1.125	1.125	63.1 61.3	,	1
3.881	3.832	11.1	1	1	1,125		11.5		
3.570	3.458	20.1	5	4	1.112	1,112	71.2	2	5
3.034	3.007	30,0	< 1	0	1.112		33.4		
2,953	2.940	21.1	4	5	1,092	1.092	21.5	~~ 1	1
2.684	2.743	30.1	6	5	1.077		53,3		
2.627	2.611	22.0	2	1	1.077	1,076	70.3	<< 1	1
2,525	2,512	31.0	4	3	1,065	1.066	63.2	1	2
2,433	2,408	20,2	~ 1	0	1,055	1.054	62.3	~ 1	
2.390	2,380	22.1	<< 1	0	1,055	1.034	22.5	~ 1	•
2.312	2,307	31.1	4	3	1.048	1,045	81.1	<< 1	1
2.208	2.197	21.2	<< 1	0	1.034	1.037	55.1	<< 1	0
2.116	2.109	40.1	i	1	1.024	1,023	52.4	< 1	2
2.088	2,081	32.0	7	7	1.011	1.009	90.0	<< 1	1
\$.088 1.086	1 000	30.2	3	,	1.008	1 006	73.1	<i>cc</i> 1	1
1 985	1,050	41.0		2	1.008	1.000	32.5		•
1.903	1.000	22.1	3	4	0,9962	0.9937	90.1 54.3	<< 1	1
1.898	1,834	31.2	- 1	0	0.9962	0.0001	41.5		
1.878		10.3			0,9873	0.9875	55.2	< 1	2
1.878	1,870	41.1	1	2	0.9787	0.9790	82.1	<< 1	1
1.768	1.755	20.3	1	1	0,9704	0.9685	44.4	<< 1	1
1.751	1,749	33.0	4	4	0,9568	0.9557	42.5	< 1	1
1.736	1,732	50.1	< 1	1	0.9414	0.9423	91.1 65.1	<)	2
1.676	1.670	33.1	3	2	0.9414		51.4		
1.648	1,644	42,1	1	2	0,9389	0.9402	82.2	< 1	2
1.634		51.0	2	6	0.9389		20.6		
1.634	1.0->1	41.2	.,	5	0.9315	0,9318	81.3	<< 1	1
1.622	1.618	30.3	- 1	2	0.9242	0,9229	71.4		1
1.573	1.570	51.1	1	1	0.9126	0,9115	83.1	< 1	2
1.528	1,525	31.3	· 1	1	0.9126	0 0037	4.1.0	2.1	,
1.467	1,465	40.3	J	2	0,3013	0.0007	74.2		•
1.458	1.456	52.0	ı	2	0,8969	0,8975	63.4	1	3
1,448	1.448	43.1	11	I	0.8862	0.8870	92.1	<< 1	1
1.439	1,433	00.4	1	1	0.8862	0 9700	66.0	< 1	1
1.413	1.410	52.1	2.1	2	0.8640	0.0100	1010		
1,41.)	1 384	11.4	< 1	2	0,8640	0.8646	41.6	3	3
1.349	1.348	61.1	<< 1	-	0.8621		75.1		2
1.342	1,340	60.2	1	2	0.8621	0.8627	53.5	1	3
1.314	1,312	44.0	< ι	1	0,8544	0 9544	65.3	<i>c</i> 1	1
1.300	1,300	52.2	I.	1	0,8544	0.0344	91.3	• •	•
1.281	1 280	44.1	<i>cc</i> 1	1	0.8327	0.8324	93.1 83.3	< 1	
1.281	1.200	42.3			0,8327		71.5		
1.268	1.268	70.1 53.1	2.1	1	0.8275	0.8277	90,4	< 1	2
1.262	1.259	22.4	<< 1	1	0.8175	0.8168	82.4	< 1	2
1.244	1,243	51.3	<< 1	1	0.8093	0,8098	10,2.1	< 1	2
1.233	1,231	62.1	< 1	1	0,8077	0.8078	93.2	1	3
1.180	1 180	71.1	10.3	1	0,8015	0.8020	85.0 52.6	< 1	2
1.180	1.100	43.3			0.7999		75.1		
1,165	1.164	41.4	· 1	1	0.7999	0.8002	72.5	· 1	2
					0.7999		21.7		
					0.7820	0 7808	94.1	e 1	2
					0,7820	0,	81.5		
					11				

[†] Present address: Department of Geochemistry and Mineralogy, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.

[‡] Obtained by Gallard-Schlesinger Chemical Manufacturers, Long Island, N. Y.