The crystal structure of $\mathrm{WCl}_{6}$.* By Deane K. Smith, $\dagger$ Richard L. Landingham, Gordon S. Smith and Quintin Johnson, Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.
(Received 31 May 1968)
A $\mathrm{WCl}_{6}$ compound, isostructural with $\mathrm{UCl}_{6}$, has been identified by comparing calculated intensities with Debye-Scherrer patterns.

During the examination of a commercial $\ddagger$ preparation of supposed $\mathrm{WCl}_{5}$, the material was submitted for X-ray analysis to verify the compound designation. Chemical analyses were inconclusive in determining the $\mathrm{W}: \mathrm{Cl}$ ratio because of difficulties with the reactivity of the compound. With the Debye-Scherrer techniques used, the pattern proved unidentifiable with any other tungsten-chlorine compound previously described (Reick, 1967). Other physical property measurements such as color and boiling point implied that the compound should be $\mathrm{WCl}_{6}$. The Debye-Scherrer pattern, however, did not conform to that of $\mathrm{WCl}_{6}$ described by Ketelaar \& Oosterhout (1943).

Needle-shaped single crystals of the unknown were examined on a Buerger precession camera. The diffraction symbol proved to be $\overline{3} m P$ _- with cell constants $a_{0}=$ $10.511 \pm 0.003, c_{0}=5.757 \pm 0.001 \AA$ (refined values from Debye-Scherrer pattern). The only systematic reflection condition was $h k .0$ present only with $h-k=3 n$. This condition must be structural because it does not conform to any conditions established by any of the allowable space groups.

Structures of similar 1:6 compounds were examined with the aid of Donnay, Donnay, Cox, Kennard \& King (1963) and Wyckoff (1967). The similarity of the unit cell to that of $\mathrm{UCl}_{6}$ reported by Zachariasen (1948) suggested a similar structure type. To test this hypothesis, powder pattern intensities were calculated using the POWD2 program of Smith (1967), with Zachariasen's $\mathrm{UCl}_{6}$ atomic position coordinates. This calculated pattern agrees very well with the measured pattern as shown in Table 1. This agreement suggests that the unknown is isostructural with $\mathrm{UCl}_{6}$ (space group $P \overline{3} m 1$ ) and is thus a new polymorph of $\mathrm{WCl}_{6}$. It can be noted that the calculated intensities also satisfy the $h k .0$ condition described.

## References

Donnay, J. D. H., Donnay, G., Cox, E. G., Kennard, O. \& King, M. V. (1963). Crystal Data, Determinative Tables, 2nd edition, Monograph 5, American Crystallographic Association.
Ketelaar, J. A. A. \& Oosterhout, G. W. (1963). Rec. Trav. chim. Pays-Bas, 62, 197.
Reick, G. D. (1967). Tungsten and its Compounds. New York: Pergamon Press.
Smith, D. K. (1967). A Revised Program for Calculated Xray Powder Diffraction Patterns, UCRL-50264, Lawrence Radiation Laboratory, Livermore, California.

* Work performed under the auspices of the U. S. Atomic Energy Commission.
$\dagger$ Present address: Department of Geochemistry and Mineralogy, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.
$\ddagger$ Obtained by Gallard-Schlesinger Chemical Manufacturers, Long Island, N. Y.

Wyckoff, R. W. G. (1967). Crystal Structures, Vol. 2, New York: Interscience Publishers.
Zachariasen, W. H. (1948). Acta Cryst. 1, 285.
Table 1. Measured and calculated d-spacings and intensities for $\mathrm{WCl}_{6}$.
Observed intensities are estimated visually from the DebyeScherrer pattern. The calculated intensities include an absorption correction for $\mu=498 \mathrm{~cm}^{-1}$ and a $0 \cdot 3-\mathrm{mm}$-dia. spindle. In space group $P \overline{3} m 1, h k . l$ and $k h . l$ are nonequivalent; however, no distinction between these reflections has been made in the assignment of indices.

| deale) | d(abs) | niso | 1 fobs |  | Ifealc) | Alcale) | d(obs) | hks | I(obs) |  | Ifrate) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5.757 | 5.635 | 00.1 |  |  | 0 | 1.142 | 1.140 | 54.1 | $<$ | 1 | 1 |
| 5.255 | 5.166 | 11.0 | 10 | 0 | 10 | 1.142 |  |  |  |  |  |
| 4.865 | 4.818 | 10.1 |  | 7 | 6 | 1.125 1.125 | 1.125 | 63.1 61.3 |  | 1 | 1 |
| 3.881 | 3.832 | 11.1 |  | 1 | 1 | 1.125 |  | 11.5 |  |  |  |
| 3.570 | 3.458 | 20.1 |  | 5 | 4 | 1.112 | 1.112 | 71.2 |  | 2 | 5 |
| 3.034 | 3.007 | 30.0 |  | 1 | 0 | 1.112 |  | 33.4 |  |  |  |
| 2.953 | 2.940 | 21.1 |  | 4 | 5 | $\begin{aligned} & 1.092 \\ & 1.092 \end{aligned}$ | 1.092 | $\begin{aligned} & 72.1 \\ & 21.5 \end{aligned}$ | \% | 1 | 1 |
| 2.684 | 2.743 | 30.1 |  | 6 | 5 | 1.077 |  | 53.3 |  |  |  |
| 2.627 | 2.611 | 22.0 |  | 2 | 1 | 1.077 | 1.076 | 70.3 | $<$ | 1 | 1 |
| $\begin{aligned} & 2.525 \\ & 2.525 \end{aligned}$ | 2.512 | $\begin{aligned} & 31.0 \\ & 11.2 \end{aligned}$ |  | 4 | 3 | 1.077 1.065 | 1.066 | 30.5 63.2 |  | 1 | 2 |
| 2.433 | 2.408 | 20.2 | r | 1 | 0 | 1.055 1.055 | 1.054 | $\begin{aligned} & 62.3 \\ & 22.5 \end{aligned}$ | $<$ | 1 | 1 |
| 2.390 | 2.380 | 22.1 |  | 1 | 0 |  |  |  |  |  |  |
| 2.312 | 2.307 | 31.1 |  | 4 | 3 | $\begin{aligned} & 1.048 \\ & 1.048 \end{aligned}$ | 1.045 | $\begin{aligned} & 81.1 \\ & 31.5 \end{aligned}$ | < | 1 | 1 |
| 2.208 | 2.197 | 21.2 | $<$ | 1 | 0 | 1.034 | 1.037 | 55.1 | $\because$ | 1 | 0 |
| 2.116 | 2.103 | 40.1 |  | 1 | 1 | 1.024 | 1.023 | 52.4 | $<$ | 1 | 2 |
| $\begin{array}{r} 2.088 \\ 3.088 \end{array}$ | 2.081 | $\begin{aligned} & 32.0 \\ & 30.2 \end{aligned}$ |  | 7 | 7 | 1.011 | 1.009 | 90.0 | < | 1 | 1 |
| 1986 | 1.980 | 41.0 |  | 3 | 2 | $\begin{aligned} & 1.008 \\ & 1.008 \end{aligned}$ | 1.006 | $\begin{aligned} & 73.1 \\ & 32.5 \end{aligned}$ | $<$ | 1 | 1 |
| 1.963 | 1.958 | 32.1 |  | 3 | 3 | 0.9462 |  | 30.1 |  |  |  |
| 1.941 | 1.934 | 22.2 |  | 3 | 4 | 0.9392 | 0.9937 | 54.3 | $<$ | 1 | 1 |
| 1.898 | 1.883 | 31.2 | $\cdots$ | 1 | 0 | 0.9962 |  | 41.5 |  |  |  |
| $\begin{aligned} & 1.878 \\ & 1.878 \end{aligned}$ | 1.870 | $\begin{aligned} & 10.3 \\ & 41.1 \end{aligned}$ |  | 1 | 2 | 0.7873 0.9787 | 0.0875 0.9790 | 55.2 82.1 | << | 1 | 2 |
| 1.768 | 1.755 | 20.3 | " | 1 | 1 | 0.9704 | 0.3685 | 44.4 | $<$ | 1 | 1 |
| 1.751 | 1.749 | 33.0 |  | 4 | 4 | 0.4568 | 0.3557 | 42.5 | ¢ | 1 | 1 |
| 1.736 | 1.732 | 50.1 | - | 1 | 1 | 0.9414 |  | 91.1 |  |  |  |
| $\begin{aligned} & 1.076 \\ & 1.676 \end{aligned}$ | 1.670 | $\begin{aligned} & 33.1 \\ & 21.3 \end{aligned}$ |  | 3 | 2 | 0.9414 0.9414 | 0.0423 | $\begin{aligned} & 65.1 \\ & 51.4 \end{aligned}$ | , | 1 | 2 |
| 1.648 | 1.644 | 42.1 |  | 1 | 2 | $\begin{aligned} & 0.9389 \\ & 0.9389 \end{aligned}$ | 0.9402 | $\begin{aligned} & 42.2 \\ & 20.6 \end{aligned}$ | $\checkmark$ | 1 | 2 |
| $\begin{aligned} & 1.634 \\ & 1.634 \end{aligned}$ | 1.631 | $\begin{aligned} & 51.0 \\ & 41.2 \end{aligned}$ |  | 3 | 5 | $\begin{aligned} & 0.9315 \\ & 0.9331 \end{aligned}$ | 0.9318 | $\begin{aligned} & 74.1 \\ & 81.3 \end{aligned}$ | $<$ | 1 | 1 |
| 1.622 | 1.618 | 30.3 |  | 1 | 2 | 0.9242 | 0.9229 | 71.4 | $<$ | 1 | 1 |
| 1.573 | 1.570 | 51.1 |  | 1 | 1 | 0.912 C |  | 83.1 | - |  | 2 |
| 1.528 | 1.525 | 31.3 |  | 1 | 1 | 0.9126 | 0.9115 | 43.5 | - | 1 | 2 |
| $\begin{aligned} & 1.467 \\ & 1.467 \end{aligned}$ | 1.465 | $\begin{aligned} & 60.1 \\ & 40.3 \end{aligned}$ |  | 1 | 2 | 0.3013 0.8097 | 0.9037 |  | $\checkmark$ | 1 | 1 |
| 1.458 | 1.455 | 52.0 |  | 1 | 2 | 0.8969 | 0.8975 | $\begin{aligned} & 74.2 \\ & 63.4 \end{aligned}$ |  | 1 | 3 |
| 1.448 | 1.448 | 43.1 |  | 1 | 1 | 0.8862 0.8862 | 0.8870 | 92.1 61.5 | $<$ | 1 | 1 |
| 1.437 | 1.433 | 00.4 | " | 1 | 1 | 0.8862 |  | 61.5 |  |  |  |
| $\begin{aligned} & 1.413 \\ & 1.413 \end{aligned}$ | 1.410 | $\begin{aligned} & 5.1 \\ & 32.3 \end{aligned}$ | - | 1 | 2 | 0.8759 0.8640 0.4 | 0.8766 0.8646 | 60.0 10.1 .0 4.6 | < | 1 | 1 3 |
| 1.388 | 1.384 | 11.4 | < | 1 | 2 | $0.86,40$ |  | 41.6 |  |  |  |
| 1.349 | 1.348 | 61.1 | < | 1 | 1 | 0.8621 $0.86,21$ | 0.8627 | 75.1 70.5 |  | 1 | 3 |
| 1.342 | 1.340 | 60.2 |  | 1 | 2 | 0.8621 |  | 53.5 |  |  |  |
| 1.314 | 1.312 | 44.0 | < | 1 | 1 | 0.8544 0.8544 | 0.8544 | 65.3 91.3 | $<$ | 1 | 1 |
| 1.300 | 1.300 | 52.2 |  | 1 | 1 | 0.8544 |  |  |  |  |  |
| $\begin{aligned} & 1.281 \\ & 1.281 \end{aligned}$ | 1.280 | $\begin{aligned} & 44.1 \\ & 42.3 \end{aligned}$ | $<$ | 1 | 1 | $\begin{gathered} 0.8327 \\ 0.8327 \\ 0.8327 \end{gathered}$ | 0.8324 | $\begin{aligned} & 93.1 \\ & 83.3 \\ & 71.5 \end{aligned}$ | < | 1 | 1 |
| $\begin{aligned} & 1.268 \\ & 1.268 \end{aligned}$ | 1.268 | $\begin{aligned} & 70.1 \\ & 53.1 \end{aligned}$ |  | 1 | 1 | 0.8275 | 0.8277 | 90.4 | $<$ | 1 | 2 |
| 1.262 | 1.259 | 22.4 | < | 1 | 1 | 0.8175 | 0.8168 | 82.4 | $<$ | 1 | 2 |
| 1.244 | 1.243 | 51.3 | << | 1 | 1 | 0.8093 | 0.8098 | 10,2.1 | < | 1 | 2 |
| 1.233 | 1.231 | 62.1 | < | 1 | 1 | 0.8077 | 0.8078 | 93.2 |  | 1 | 3 |
| ${ }_{1}^{1.180}$ | 1.180 | 71.1 | $\because$ | , | 1 | $\begin{aligned} & 0.815 \\ & 0.8014 \end{aligned}$ | 0.8020 | $\begin{aligned} & 85.0 .6 \\ & 50 \end{aligned}$ | , | 1 | 2 |
| 1.180 1.165 | 1.164 | 41.4 |  | 1 | 1 | $\begin{aligned} & 0.799999 \\ & 0.7999 \\ & 0.7999 \end{aligned}$ | 0.8002 | $\begin{aligned} & 75.1 \\ & 72.5 \\ & 21.7 \end{aligned}$ | - | 1 | 2 |
|  |  |  |  |  |  | 0.7820 <br> 0.7820 <br> 0.7820 0.7820 $\qquad$ | 0.7808 | $\begin{array}{r} 11.1 .1 \\ 94.1 \\ 81.5 \\ 31.7 \end{array}$ | $\checkmark$ | 1 | 2 |

